Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model.
نویسندگان
چکیده
Brain tumor microvessels/capillaries limit drug delivery to tumors by forming a blood-brain tumor barrier (BTB). The BTB overexpresses ATP-sensitive potassium (K(ATP)) channels that are barely detectable in normal brain capillaries, and which were targeted for BTB permeability modulation. In a rat brain tumor model, we infused minoxidil sulfate (MS), a selective K(ATP) channel activator, to obtain sustained, enhanced, and selective drug delivery, including various sized molecules, across the BTB to brain tumors. Glibenclamide, a selective K(ATP) channel inhibitor, significantly attenuated the MS-induced BTB permeability increase. Immunocytochemistry and glibenclamide binding studies showed increased K(ATP) channel density distribution on tumor cells and tumor capillary endothelium, which was confirmed by K(ATP) channel potentiometric assay in tumor cells and brain endothelial cells cocultured with brain tumor cells. MS infusion in rats with brain tumors significantly increased transport vesicle density in tumor capillary endothelial and tumor cells. MS facilitated increased delivery of macromolecules, including Her-2 antibody, adenoviral-green fluorescent protein, and carboplatin, to brain tumors, with carboplatin significantly increasing survival in brain tumor-bearing rats. K(ATP) channel-mediated BTB permeability increase was also demonstrated in a human, brain tumor xenograft model. We conclude that K(ATP) channels are a potential target for biochemical modulation of BTB permeability to increase antineoplastic drug delivery selectively to brain tumors.
منابع مشابه
Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels.
The blood-brain tumor barrier (BTB) limits the delivery of therapeutic drugs to brain tumors. We demonstrate in a rat brain tumor (RG2) model an enhanced drug delivery to brain tumor following intracarotid infusion of bradykinin (BK), nitric oxide (NO) donors, or agonists of soluble guanylate cyclase (sGC) and calcium-dependent potassium (K(Ca)) channels. We modulated K(Ca) channels by specific...
متن کاملTargeting potassium channels for increasing delivery of imaging agents and therapeutics to brain tumors
Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/capillaries that form the blood-brain barrier not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiologi...
متن کاملRelationship between dietary virgin Olive oil on brain Cholesterol, Cholesteryl ester and Triglyceride levels and Blood Brain Barrier (BBB) permeability in a rat stroke model
Introduction: Recent studies suggest that dietary virgin olive oil (VOO) reduces hypoxia-re oxygenation injury in rat brain. We have attempted to determine the effect of dietary virgin olive oil on brain lipidomics and its relationship with brain edema in a rat stroke model. Methods: Five groups, each consisting of 6 male Wistar rats, were studied. The first and second groups (control and s...
متن کاملRapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide.
At the blood-brain barrier, P-glycoprotein, an ATP-driven drug efflux pump, selectively limits drug access to the brain parenchyma, impeding pharmacotherapy of a number of central nervous system (CNS) disorders. We previously used confocal imaging to demonstrate in isolated rat brain capillaries that endothelin-1 (ET-1), acting through an ET(B) receptor, NO synthase, and protein kinase C, rapid...
متن کاملIncreasing of Blood-Brain Tumor Barrier Permeability through Transcellular and Paracellular Pathways by Microbubble-Enhanced Diagnostic Ultrasound in a C6 Glioma Model
Most of the anticancer agents cannot be efficiently delivered into the brain tumor because of the existence of blood-brain tumor barrier (BTB). The objective of this study was to explore the effect of microbubble-enhanced diagnostic ultrasound (MEUS) on the BTB permeability and the possible mechanism. Glioma-bearing rats were randomized into three groups as follows: the microbubble-enhanced con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 24 شماره
صفحات -
تاریخ انتشار 2003